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- symmetry class 7~3m 
(h + k, l) or (h + l, k) or (k + l, h) = 0 mod (2, 2) 
(h, k, l) = 0 mod (0, 2, 2) or (2, 0, 2) or (2, 2, 0) 
(h _+ k 4-/)=0 mod (0). 
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A probabilistic theory is described which is able to estimate in P I  the signs of the quintet invariants. An 
investigation is carried out on the use of special quintets in order to estimate one and two-phase sem- 
invariants by means of the complementary-invariants method. 

1.1. Introduction 

Let hi, h2, h3, h4, h5 be reciprocal vectors for which 

h~ + h 2 + h a W h 4 + h s = 0 .  

Then the linear combination of phases 

(P = (//)hi -}- (Ph2 + (Ph3 "3!- (Ph4 + (Ph 5 (1) 

is a structure invariant. The theory of representations 
(Giacovazzo, 1977) states that q~ may be evaluated in 
P1 or P-f via its first phasing shell by means of the 15 
magnitudes 

Emlhl +...rash 5 (mp =0,1). (2) 

Schenk (1975) spoke of quintets at the Tenth Interna- 
tional Congress of Crystallography. The main result 
presented was a linear trend of tp versus the sum of the 
cross-magnitudes. At the Buffalo Symposium on Direct 
Methods more detailed analysis was presented by 
Schenk (1976) by a semi-empirical method and by 
Fortier & Hauptman (1976) with the theory of the 
joint probability distribution functions. More recently, 
Fortier & Hauptman (1977) described a probabilistic 
approach in P1 which is able to predict the sign of a 
quintet by means of a formula which involves a summa- 
tion over 1024 contributions. This paper describes a 
probabilistic approach to quintets in P i  which leads 
to formulae more tractable than Fortier & Haupt- 

man's. Special quintets are also studied which may 
allow good estimates of one and two-phase structure 
seminvariants. 

1.2. The mathematical approach 

The method to be described requires the derivation of 
a variety of conditional probability distributions. If 
we denote by P(E1, E2, ..., E,) the joint probability 
function of n normalized structure factors, its character- 
istic function may be expanded in a Gram-Charlier 
series: 

C(u~, ..., u,) = exp [--  }(u~ + ... + u~)] 
x [-1 + S3/t 3/2 + (S4/t 2 + $2/2t 3) 
+(S5/ t  5/2 +$3S4 / t  7/2 +$3/6t9/2)+ . . . ] ,  (3) 

where ui, i=  1,...,n are carrying variables associated 
with Ei, t is the number of independent atoms in the 
unit cell, 

r s  w S~=t ~ - - " "  (iux)r(iu2)~...(iu,) w, 
r ! s ! ] . iw  v r + S + . . . + W = V  

and 
g r s . . .  ~,v 

'~rs...w = m(r+s+ ... +w)/2" 

K,~ . . . .  are the cumulants of the distribution and m 
is the order of the space group. P(E1, E2, ..., E,) is the 
Fourier transform of (3). 
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This method is simpler than that followed by Fortier 
& Hauptman (1976), who use the exponential form of 
the characteristic function to calculate the probability 
density function. Since this function would be too 
intractable to be useful in applications, it is expanded 
in a Taylor series. Thus in both methods the probability 
density functions have the form of a series expansion, 
but their algebraic expressions are not identical 
because of the different mathematical approaches. 

Because of the lengthy calculations, only the con- 
clusive formulae derived in this paper will be quoted. 
An account of the approach may be found in Giaco- 
vazzo (1976a). 

1.3. The sign of a quintet via its first phasing shell 

Let ~p, as given by (1), be a quintet. The 15 reflexions 
contained in the first phasing shell of ~p are 

Eh, Ek, El, Era, Eh+k+l+m, 

Eh+k, Eh+l, Eh+m, Ek+l+m, Ek+l, (4) 

Ek+m, Eh+l+m, El+m, Eh+k+m, Eh+k+l. 

Let us denote 

E I = E h ;  E 2 = E k ;  . . . ;  Els----Eh+k+l. 

By means of the mathematical approach described in 
§ 1.2 we have studied the joint probability distribution 
function of the reflexions (4). Denoting by P+ the 
probability that the sign of EhEkE,EmEh+k+n+m is 
positive, we have 

. _  r~,...~ ( 1 +C/2N+-D/8N I + A + B  )] P + ~ _ ½ + ½ t a n h | N [ / N  , (5) 

where 

EI... 5 = IE1E2E3E4Es], 

15 
A : ~  ei, 

6i 

B = 86913 +86815 + 86814+87811 +87815 +87812 

+ 88810 + 88814 + 88812 + 810815 + 81099 + 81 1814 

+81 189+813/39+813812, 

C=F,18286 +818387 +819488 +8185/39 +81810/315 
+81911814+81813812 +8283810 +8284811 

+ 82/3"5/312 + 82/37/315 + g288814 + 8281389 + 83/34/313 

+8385g14 +/3386815 +g398812 +8381189 +8485815 

+ 8486g 14 + 8487812 + g4g 1089 + 8596g 13 + 8587811 

+8588810, 

15 
D = )-" H 4(Ei), 

l i  

e i = ( E 2 -  1). 

H4(x) is the Hermite polynomial of order four given by 

H4(x) = x 4 - 6x 2 + 3. 

Equation (5) tells us that the sign of a quintet de- 
pends on an intricate interrelationship among the 
cross-magnitudes. The character of positivity or nega- 
tivity is strengthened by large values of El. . .  5. 

Equation (5) may be generalized to structures with 
unequal atoms (see Fortier & Hauptman, 1976, for a 
related expression) by means of 

P+ ~-0"5 +0-5 t a n h / E l  5 

x + ~ +  1+ 2---~-~+~-~ , (5') 

where 
0~_ ..,9/21,.,3 tP2 /~3, 

/3 = 0-29/2/0- 3( 3 °-.2 - 0- 20-4), 

V = 0-9/2/(150- 3 - 100-20-30- ̀ + 0"20"5) , 

6 = a~/0- 4,  

N 

0-n E J" = f~ 
l j  

Practical aspects of (5) and experimental results are 
described in the following paper. 

1.4. A comparison with triplet and quartet theories 
The sign of a triplet is always probably positive: 

[IEhEkEh +k]) 
P+(EhEkEh+k)~--½+½tanh\ V N  • 

The sign of a quartet, according to the relation 
(Giacovazzo, 1975a) 

P +(EhEkEuEh+k +l)"~½+ ½ tanh 1 1 [EhEkEnEh+k +U [ 

2 2 2 
E h + k + E h + i + E k + l - - 2  ] 

2 2 2 , x 1 + 4 ( E h + k + g h + n + E k + l - - 3 ) / g  J 

depends on the values of the cross-magnitudes. 
From (5) we can expect that the percentage of nega- 

tive quintets will in general be larger than that of 
triplets and quartets in the same structure. In fact, the 
mean values of triplets, quartets and quintets under 
the hypothesis that the cross-vectors are independent 
variables over reciprocal space, are respectively 

(EhEkEh+k)  ~-- 1/l /N , 

(EhEkEiEh+k +l) ~-- 1/N, 
< EhEk EIEmEh + k +,+ m> ~ 1/N V N .  

(6) 

Equation (6) tell us that the mean positivities of the 
triplets and quartets are of order I ~ . N  and 1IN 
respectively, whereas the mean posltivity of the 
quintets is of order 1/NI/N.  This property, as we show 
in the Appendix, can be of use in crystal structure 
solution. 

AC 33A~* 
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1.5. The marginal probability 
P(Eh, Ek, EI, Em, Eh +k + I + m )  

If instead of 15 magnitudes, one has only the five 
magnitudes Eh, Ek, E,, Era, Eh+k+,+m, the final sign 
relationship, correct up to and including terms of 
order 1/NVN, is 

~ + l tanh  fE1...5"~ 
P+~-: : ~NI//N ].  (7) 

(7) is a particular case of the Simerska (1956) formula 
and may be compared with (5) to illustrate the dramatic 
change which may take place when 5 magnitudes are 
given instead of 15. According to (7) in fact the sign of a 
quintet is always probably positive. 

1.6. The marginal probability densities 
P(Eh, Ek, EI, Em, Eh+k + I + m , ' '  ") 

The number of quintets for which all ten cross-vectors 
are in the set of measured reflexions may be a small 
percentage of the observable quintets. So it might be 
useful to use in direct procedures quintets for which 
merely nine, eight, seven, ... cross-vectors are in the 
set. The marginal probability densities 

P(Eh, Ek, El, E.,, Eh+k+l+m,...) 

are able to provide suitable formulae. One may show 
that the probability values may be derived from (5) by 
equating to zero the terms ei corresponding to the 
magnitudes IEil which are not in the set of measure- 
ments. In this connexion we note that marginal prob- 
ability densities of the same order are not equally 
efficacious (in the statistical sense) for estimating the 
sign of a quintet. Let us suppose, for example, that 
IEh+kl and IEh+ll are not in the set. Then the factors 
A, B, C, D in (5) will contain 8, 9, 8, 13 terms respectively. 
The same situation does not occur when [Eh+kl and 
IEh+k+d are unknown. In this case A, B, C, D contain 
8, 10, 9, 13 terms respectively. Of course the latter 
situation is, in general, more favourable than the 
former for giving a sign to a quintet invariant. 

2.1. Special quintets 

When m = - 1 the quintet invariant ~Oh + (j0k -4- (Pl4- 
q~m -- ~0h + k + ~ + m reduces to 

q~ = q)h -~- q)k - -  (~0h + k ,  

and the 15 reflexions (4) reduce to 10: 

Eh,  Ek ,  E h + k ,  El ,  Eh__+ I, E k + l ,  E h + k + l .  (8)  

In accordance with the theory of representations 

1[12 = ~Oh "J- (/Ok - -  (~0h + k + q~l - -  q)! 

is an element of the second representation of q~ and the 
magnitudes (8) are its phasing magnitudes. 

When m = i the quintet invariant reduces to 

(/gh "1- (10k "3 t- 2qh - f/0 h + k + 21" (9) 

In P]- (9) coincides with the three-phase seminvariant 

(~0h -~- (~0k - -  (ph + k + 2 i . (10) 

In accordance with the theory of representations, (9) 
is an element of the first representation of (10). 

These types of special quintets can play an important 
role in procedures for phase assignment: they will be 
studied in subsequent papers. In this section we deal 
only with special quintets which enable us to estimate 
in P]- one and two-phase seminvariants. The method 
will be that of complementary invariants, whose back- 
ground is described by Giacovazzo (1977). We note 
furthermore that formulae for general quintets may be 
inadequate for special quintets. Thus the introduction 
of special formulae for special quintets will further 
strengthen the overall theory of quintets. 

2.2. The sign of E2h 

If m = - 2h, the quintet invariant ~0h + ~0k + ~01 + q~m-- 
qgh + k +, + m reduces in P]- to 

(~9 2h - -  (~gh "31- (~k -JI- (pl - -  ~ h  + k + i . ( |  l )  

A distinctive feature of (11) is that it contains the 
quartet ¢Ph + ~0k + qh-- ~0h + k +," Under the assumption 
that the sign of the quartet is known, the sign of the 
quintet fixes that of Ezh. The method is a further 
generalization of that described by Giacovazzo (1975b). 
There, special quartets q)2h - -  (/Oh + (Pk - -  (Ph+ k were used 
in order to derive the sign of E2h. 

We note that one of the cross-vectors of( l  l) (i.e. h) 
coincides with a basis-vector; thus the sign of(11) may 
be derived from only 14 phasing magnitudes. From 
the distribution 

P ( E 2 h ,  Eh ,  Ek ,  El ,  E h + k ÷ l ,  E 2 h + k ,  E 2 h + l ,  E - h + k ,  

E - h + l ,  E k + l ,  E h + k ,  E h + l , E - h + k + l ,  E 2 h + k + l )  

we obtain for (11) the sign probability: 

P+~--½+½tanh[NVN I +C'/2N~-D~SN ' 
where 

E1...5=IE1E2E3E4EsI, 

14 

A' : ~ 8i, 
6 i  

B'----86E9--~-E6Ell--I-E6£14 

--~--8788-aI-G7812--~-87814 

-qt-~8811--~-88E13--~-E9E12 

-Jr-~9~13--~-C10~13--~-t;10~14, 

C' = ~ t H4(E2)/4 -k- e 1 ~3~:6 "-~ e I e4E 7 

- '~-~l~5E13- '~-g l~8gl l - '~-~lE9~12 

-a t -Cl~10E14q' -~2g3E8- '~-~2g3Ell  

(12) 
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at-/-;2F'4E9 3t- g2~;4F" 12 nt- g2g5E10 

-t-I;295E14-t-g296E11 -3t- F,2~TF,12 

-~- 1"2 £ 1 o ~ 13 + E3~4/~ 1 o -Jr g3£5g 12 

+ £3g7 E 14 ~ g3~9 ~; 13 -Jr- ~495 F" 11 

_Jr_ E4G6g 14 nt_ ~4E8S 13 -Jr- GS~6E9 

q- ~ 5'e"vg8 -'1- ~8 F" 10 g I 2 "1- ~9 G 10 g 11 

"t- G11El 2~14 ,  

14 

o '=  - Z / 4  4(E,). 
l i  

The order of the indices follows that of the E's in the 
distribution. A great advantage of the approach is 
that, for a given Ezh, k and | are free vectors which may 
vary over reciprocal space. Thus a large number of 
quintets may be exploited in order to make reliable the 
estimation of the sign of E2h. Practical aspects of the 
approach and experimental results are described in the 
following paper. 

2.3. The sign of the two-phase seminvariants 

Let (ph-~q)k be a structure seminvariant in P1. By 
denoting 

h = H + K ,  k = H - K ,  

the structure invariant ~0h + ~0k -- qh + ~0m -- ~0h + k - ~ + m 
may be written 

q0n + K -}- q0n- K -- q01 + (pro -- (¢)2H- ! + m . (13) 

The value of q0n+K + (Pn-K is fixed if(13) and the three- 
phase seminvariant ¢Pt--CPm+CPZn-~+m are known. A 
large number of quintets may occur to make reliable 
the estimation of (Pn+K + rPn-K since i and m are free 
vectors. 

A simpler procedure for estimating On +K + q0a-K is 
that of putting in (13) m =  - H .  (13) reduces then to 

(DH+K "~- (DH-K - -  (RH - -  q ) l -  (RH- I • (14) 

Under the assumption that the sign of the triplet 
invariant q~n-~0~-cPn-t is known, the sign of (14) 
fixes that of (PH+K+ q~n-K. Several quintets may occur 
to fix the value of (Pa+K + (Pn-K, since ! is a free vector. 
The value of(14) depends on the eight cross-vectors 

2H, K , H + K - I , K + I , H - K - I , - K + i , H + I , - 2 H + I .  

We have thus studied the distribution 

P ( E h + k ,  E h - k ,  Eh ,  E l ,  E h - I ,  E 2 h ,  Ek ,  E h + k - i ,  E k + l ,  

E h - k - I ,  E k - i ,  E h + l ,  E 2 h - I )  

and obtained for (14) the sign probability 

13 

A "  :-  Z gi, 
6 i  

B "  = g6g,, 12 + g6g l  3 -{- g7g8 +" g799 

+g,,7glOq-g7911 -F,g8911 + gSgl  3 

+ g9gl 0 'k- g9gl 2 -'}- glOgl 3 + gl l g l  2 ,  

C "  : glg,2g6 nt- £ 1 g,,397 nt- g18488 

-t- glg5g9 "4- g l g l O g l  3 nt- g ig1  l g t  2 

-~- g293~7 "Jr- g2g4.F'l 0 + g2g5gl 1 

-t- g,2gS~ 13 -Jr- g299~ 12 q- ~39495 

-J-/:;3F,4~; 12 -[- '?,395913 -Jr- g398/311 

-1- g" 3F,9 g 10 -t- e,6H 4( E 3)/4 + e,4~6 e, 13 

-{- ~;497g 11 + g4/';7F"9 + E5g6gl  2 

+ g5~'7E10 + g5C7g8, 

13 

D " =  - Z H 4(E,). 
l i  

The order of the indices follows that of the E's in the 
distribution. Practical aspects of the formula and 
experimental results are described in the following 
paper. 

Conclusions 

We have obtained a formula which is able to calculate 
in P1 the sign probability for quintet invariants. We 
anticipate that the formula holds in all centrosymme- 
tric space groups when all cross-reflexions are of 
general type. When special cross-reflexions occur, 
algebraic considerations similar to that described by 
Giacovazzo (1976b) will be needed. 

Special quintets which enable one to estimate one 
and two-phase seminvariants in P1 are described and 
the corresponding sign probabilities are obtained. The 
method pursued is that of complementary invariants, 
whose background has been recently described by 
Giacovazzo (1977). 

APPENDIX 

About quartets and quintets 

The quartet 

q - -  q)h "at- (pk + (pl - -  (ph + k + ! 

exploits three (not independent) tripoles 

ql = q  

t I : - -  ( p h - -  ~0k-31- (Dh+ k 

/2 = - -  (P l - -  (~0h + k'3L q ) h + k +  I, 

[ ( )] P+-~½+½tanh El..., 1+C"/2N+N'/SNJJ' 
where 

(15) 
q l=q  

t 3 =  - -  (~0h - -  q)l -~- (ph + I 

[4 = - -  q)k - -  (ph + i -3t- (49h + k + i,  
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q l = q  

t5 = -- qgk -- qh + q~k + ! 

t 6 =  - -  (ph - -  ~0k + i -Jr (~h + k + 1 . 

Q1 =Q 

qx = - (Ph- -  q)k--(Pl-{-  (Ph+k+ l  

t 3 = - -  ( p r o - -  ( P h + k +  i -3t- ~ / ) h + k + i + m .  

(A.2) 

One obtains - q = t l + t 2 = t 3 + t 4 = t s + t  6. Thus the 
expected value of a quartet estimates three sums of 
two triplets. Let us now suppose that all the reflexions 
involved in the tripoles have magnitudes larger than E,, 
where E, is the minimum value of IEI chosen for 
carrying out phase determination by means of triplets. 
If E, is large enough (i.e. > 1"3) and the probabilistic 
theories of triplets and quartets hold, then 

q~--tl ~ - - t 2  ~ -  . . .  "~ t 6 - - 0 .  

In this case it is claimed that 'quartets contain the same 
information as triplets'. As we have just seen this is not 
quite true because the expected value of a quartet 
estimates sums of two triplets. 

Let us now suppose all IErs are larger than E,, 
except IEh+,l and IEk+,l which are near zero. In this 
case t x and t2 are the only triplets which are estimated 
in the direct procedure. In particular, if q~h----- q~k-- qh ~-- 0, 
triplet theory gives q~h+k+~--~0. Under the same condi- 
tions from probabilistic quartet theories (Haupt- 
man, 1975a, b; Giacovazzo, 1975a, 1976c) one obtains 
q~_rt/2 (or rt in centrosymmetric space groups). In 
particular, if ~0h = ~Ok = qh ~ 0, then q~h + k + I ~ rt/2 (or rt). 
This dramatic change occurs chiefly because quartet 
theory is able to exploit information not used by 
triplet theory (i.e. IEh+l[ and IEk+d are small). 

If all IEl's are larger than Et, except [Eh+kl , [Eh+,[, 
IEk+d which are near zero, no triplet appearing in the 
tripoles is estimated in the direct procedure. However, 
quartet theory enables us to estimate q-~rt. The im- 
portance of these quartets is too well known to be 
described here. 

The quintet 

Q = (Ph + (Pk + (Pl + (Pro-- (ph + k + 1 +m 

may be considered as arising from multipoles of type 

or of type 

Q1 = Q  

tl = - q~h-- qh+ tPh+l 

t 2 - - - -  - -  (~0k - -  ( p h  + ! --]- ( p h  + k + I 

t 3  ---- - -  ~Om -- (Ph+ k + i Jr- (/gh + k + I+m 

(A.1) 

Ten tripoles such as (A.2) may be contructed for each 
quintet, one for every cross-vector of the quintet. Since 
every quartet is equivalent to three triplets, 30 quadru- 
poles of type (A.1) may be contructed for every quintet. 
In conclusion, the expected value of a quintet estimates 
sums of three triplets (or of a quartet plus triplet). 

Let us now suppose that all the basis and the cross- 
magnitudes of the quintet are larger than E,. If the 
probabilistic theories of triplets and quintets hold, then 

- Q = t ~  + t 2 + t 3 = t l  ~-t2.. .  "~0. 

In this case it is claimed that 'quintets contain the same 
information as triplets', even though we have just 
shown this is not true in principle. 

If not all the IErs are larger than E,, then a quintet is 
estimated from a set of experimental data not wholly 
exploited by triplets. If we suppose that in (A.2) 
IEhl, lEd, lEd, IEml, IEh+k+~+ml are large and IEh+k+d is 
near zero, quartets like q~ are not calculated in a direct 
procedure using quartets. It should be noted that such 
quartets are expected to assume any value between 0 
and 2n. Thus, a percentage of negative relationships 
are to be expected for quintets larger than for triplets 
and quartets. 

In conclusion, information given by quintets is in 
general different from that given by triplets and 
quartets both because of the different meaning of the 
relationships and of the extension of experimental data 
accessible for each phase relationship. 
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